
技术摘要:
本发明属于建筑物修复技术领域,公开了一种受损古建筑柱体的多方位修复系统及方法,受损古建筑柱体的多方位修复系统包括图像采集模块、图像分析模块、中央控制模块、修复部位确定模块、破坏度测定模块、三维建模模块、修复模拟模块、修复方案生成模块、可行性分析模块 全部
背景技术:
目前:古代建筑是我国历史文物中的重要组成部分,保护和修复古代建筑是文物 保护工作中的重要任务之一。古建筑的修复和保护由于被保护建筑的自身历史价值、历史 地位、建筑质量、被损程度和人文历史环境等因素的不同,而采取不同的修复方式。一般分 为三类,第一类是最常见的做法为修旧如旧,即尽可能地恢复被保护建筑的原有风格,甚至 使其焕然一新,这种做法一般用在寺庙和名人的故居等,原有的用途未被改变或作为参观 等使用;第二类是新旧对比:强调修缮的时代痕迹,使得修缮的部位可以明显地区别于原有 部分,这种方式在欧洲的古老建筑中比比皆是,但在国内较少被采用;第三类是用现代的空 间艺术语言与已存在的历史建筑进行对话,这种方式已越来越被普遍地接受,尤其在古建 筑扩建、改建的过程中使用得较为广泛,最成功的应该是罗浮宫的扩建工程。但是目前对古 建筑的修复采用固有模式,无法实现针对性修复,修复效果差;并且修复前缺少科学合理的 修复方案,修复中易产生不可挽回的损失。 通过上述分析,现有技术存在的问题及缺陷为:目前对古建筑的修复采用固有模 式,无法实现针对性修复,修复效果差;并且修复前缺少科学合理的修复方案,修复中易产 生不可挽回的损失。
技术实现要素:
针对现有技术存在的问题,本发明提供了一种受损古建筑柱体的多方位修复系统 及方法。 本发明是这样实现的,一种受损古建筑柱体的多方位修复系统,所述受损古建筑 柱体的多方位修复系统包括: 图像采集模块、图像分析模块、中央控制模块、修复部位确定模块、破坏度测定模 块、三维建模模块、修复模拟模块、修复方案生成模块、可行性分析模块、显示模块; 图像采集模块,与中央控制模块连接,用于通过摄像头进行古建筑柱体图像的采 集; 图像分析模块,与中央控制模块连接,用于通过图像分析程序对采集柱体图像进 行分析; 中央控制模块,与图像采集模块、图像分析模块、修复部位确定模块、破坏度测定 模块、三维建模模块、修复模拟模块、修复方案生成模块、可行性分析模块、显示模块连接, 用于通过主控机控制各个模块正常运行; 修复部位确定模块,与中央控制模块连接,用于通过修复部位确定程序确定修复 部位; 5 CN 111612907 A 说 明 书 2/7 页 破坏度测定模块,与中央控制模块连接,用于通过破坏度测定程序测定柱体修复 部位的面积、深度; 三维建模模块,与中央控制模块连接,用于通过三维建模程序建立柱体三维模型; 修复模拟模块,与中央控制模块连接,用于通过修复模拟程序模拟修复操作; 修复方案生成模块,与中央控制模块连接,用于通过修复方案生成程序生成修复 方案; 可行性分析模块,与中央控制模块连接,用于通过可行性分析程序分析修复方案 的可行性; 显示模块,与中央控制模块连接,用于通过显示器进行柱体三维模型、修复模拟、 修复方案的显示。 进一步,所述图像分析模块包括: 图像预处理单元,用于将采集的古建筑图像进行图像格式识别处理、图像灰度处 理、图像平滑处理、图像锐化处理以及边缘检测处理,得到经过预处理后的古建筑图像; 图像分割单元,用于将经过预处理后的古建筑图像进行分割处理,具体包括以下 步骤: 将预处理后的古建筑图像经过边缘检测算法获得古建筑图像的梯度幅值和梯度 方向; 将获得的梯度幅值和梯度方向进行轮廓提取算法,得到具有轮廓的古建筑图像; 将具有轮廓的古建筑图像进行膨胀算法使得古建筑图像的二值图扩大一圈; 采用光栅扫描搜索古建筑图像中各像素值的像素点,按照像素值进行分割,进行 轮廓优化。 进一步,所述图像预处理单元中的图像格式识别处理具体是:将含有破损的目标 图像转化为控制器识别的图像格式; 图像灰度处理具体是:将经过图像格式识别处理的古建筑图像转化为灰度图; 图像平滑处理具体是:采用模板滤波法将转化为灰度图的古建筑图像进行处理得 到平滑处理后的古建筑图像; 图像锐化处理具体是:采用拉普拉斯锐化法对平滑处理后的古建筑图像进行锐化 处理。 进一步,所述修复部位确定模块包括: 训练单元,用于获取至少一个样本破损区域分别对应的样本图像,根据各个所述 样本图像确定卷积神经网络模型; 图像采集单元,用于采集待检测古建筑的至少一个切割图像所分别对应的采集图 像; 所述卷积神经网络模型,用于针对每一个所述采集图像,提取所述采集图像的至 少一个特征区域,并根据提取的各个所述特征区域确定所述采集图像所对应的切割图像是 否存在破损区域; 破损提示单元,用于当所述采集图像所对应的切割图像存在破损区域时,确定所 述采集图像所对应的切割图像的位置信息,生成携带所述位置信息的破损提示信息。 本发明的另一目的在于提供一种受损古建筑柱体的多方位修复方法,所述受损古 6 CN 111612907 A 说 明 书 3/7 页 建筑柱体的多方位修复方法包括以下步骤: 步骤一,通过摄像头进行古建筑柱体图像的采集;通过图像分析程序对采集柱体 图像进行分析; 步骤二,通过修复部位确定程序确定修复部位;通过破坏度测定程序测定柱体修 复部位的面积、深度; 步骤三,通过三维建模程序建立柱体三维模型;通过修复模拟程序模拟修复操作; 步骤四,通过修复方案生成程序生成修复方案;通过可行性分析程序分析修复方 案的可行性; 步骤五,通过显示器进行柱体三维模型、修复模拟、修复方案的显示。 进一步,所述对采集柱体图像进行分析具体包括: (1)对建筑物柱体图像的对称性进行分析,得到对称模型; (2)将得到的对称模型应用到图像中,以原图像与其镜像图像的最大互信息为最 优化条件计算最优化的中矢线; (3)计算基于中矢线的镜像图像减影:计算原始图像与其基于最优化的中矢线镜 像图像减影; (4)基于松弛迭代的初始区域跟踪:利用松弛迭代方法跟踪柱体区域的初始边界; (5)根据柱体区域的初始边界,计算原始种子点和窗宽,利用均值漂移算法分割原 始柱体图像。 进一步,所述计算最优化的中矢线具体包括:任意给定过重心的一条直线;计算图 像关于直线的对称图像;求原图像与镜像图像的互信息量;以互信息量为相似性测度,使用 鲍威尔算法优化直线斜率,使得互信息量最大;确定最优化的中矢线。 进一步,确定修复部位包括以下步骤: (1)针对采集到的图像信息,进行图像表面平整区域的识别; (2)若识别到平整区域,则对识别出的平整区域进行勾画;若未识别到平整区域, 则返回“(1)”; (3)计算所勾画出的平整区域的灰度数值; (4)针对所采集到的图像对所勾画出的平整区域进行抠除处理; (5)返回“(1)”;直至计算出的平整的区域的灰度数值最大,停止定位,确定修复部 位。 进一步,所述测定柱体修复部位的面积、深度具体为:检测修复部位的实际位置信 息,包括: 测量修复部位距离摄像头第一边缘的第一距离和修复部位距离摄像头第二边缘 的第二距离,所述第二边缘与所述第一边缘相对;根据所述第一距离和第二距离确定所述 修复部位在第一方向上的实际位置信息;根据接收到的所述修复部位的实际位置信息与预 先设定的标准位置信息计算偏移量。 进一步,所述建立柱体三维模型具体包括: 1)进行拍摄位置信息的预测; 2)进行单图像平面轮廓生成,对于每幅图像,通过用于提取图像轮廓的深度学习 模型,提取所述全景图像的平面轮廓; 7 CN 111612907 A 说 明 书 4/7 页 3)进行尺度归一化,将所估计的在拍摄每幅图像时的拍摄位置的尺度和每幅图像 的平面轮廓的尺度进行归一化,得到经过归一化的各图像的平面轮廓; 4)基于图像的平面轮廓,得到各单个三维对象的在三维空间中的平面轮廓; 5)基于各单个三维对象的在三维空间中的平面轮廓,拼接得到在三维空间中的多 对象平面轮廓; 6)将拼接得到的在三维空间中的多对象平面轮廓转化为多对象3D模型。 进一步,所述进行拍摄位置信息的预测包括:利用针对待处理的至少一个三维对 象拍摄的至少一幅图像的几何关系,估计在拍摄每幅图像时的拍摄的位置、以及每幅图像 上的匹配特征点的三维点坐标,其中,每幅图像是针对一个三维对象拍摄的,每个三维对象 对应于一幅或多幅图像; 进一步,分析修复方案的可行性包括: 使用数据手套建立虚拟手,并配置虚拟工具,将虚拟手和虚拟工具结合对三维模 型模拟修复,模拟修复操作的可行性,并熟练修复流程,记录修复方案。 进一步,分析修复方案的可行性还包括: 通过显示屏显示修复方案;在三维模型上进行修复过程的模拟,该过程在显示器 显示。 结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明通过对建 筑物柱体图像的分析得到修复部位的准确且详细信息,得到的修复方案更具有针对性,修 复效果更好;三维模型的建立能够实现对修复过程的模拟,实现对修复方案的模拟;得到修 复方案后进行可行性分析,修复方案更佳科学、合理,修复效果更好,有利于保持古建筑的 完整性。 附图说明 为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使 用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于 本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的 附图。 图1是本发明实施例提供的受损古建筑柱体的多方位修复系统的结构框图。 图2是本发明实施例提供的受损古建筑柱体的多方位修复方法的流程图。 图3是本发明实施例提供的对采集柱体图像进行分析的流程图。 图4是本发明实施例提供的确定修复部位的流程图。 图5是本发明实施例提供的建立柱体三维模型的流程图。 图1中:1、图像采集模块;2、图像分析模块;3、中央控制模块;4、修复部位确定模 块;5、破坏度测定模块;6、三维建模模块;7、修复模拟模块;8、修复方案生成模块;9、可行性 分析模块;10、显示模块。