logo好方法网

一种面向尾矿库的姿态预警方法和系统


技术摘要:
本发明公开了一种面向尾矿库的姿态预警方法和系统,方法包括:S1:获取尾矿库的三维点阵云数据;S2:根据预设模型计算尾矿库的姿态关键点;S3:计算尾矿库姿态关键点的偏差;S4:计算尾矿库姿态关键点的变化趋势;S5:尾矿库姿态关键点和变化趋势可视化。系统包括:融  全部
背景技术:
一般矿产开采企业会重点建设三大基础设施:采矿设施、选矿设施以及尾矿设施。 尾矿设施一般包括:堆存系统、排洪系统和回水系统等子系统,尾矿设施因地制宜由筑坝拦 截谷口或围地建设而成。尾矿设施的回水系统能够提高水资源的利用率并限制工业废水污 染环境;尾矿设施的排洪系统能减缓大型自然灾害对矿区的破坏;尾矿设施的堆存系统能 够储藏尾矿矿渣,尾矿矿渣可能包含贵重金属成份,回收利用可能存在潜在经济价值。 尾矿库是一个具有高势能的人造泥石流危险源,存在溃坝隐患;尾矿库包含工业 药剂,溃坝之后存在污染环境的潜在隐患;随着矿山集约化的土地利用政策,细粒筑坝与高 堆尾矿坝是必然的选择,使溃坝隐患更加突出。 尾矿库的状态监测,能够提前预警高尾矿库的重要状态结构变化,能够在一定程 度上提前发现结构隐患,并提前采取得当的加固措施,提高高尾矿库的安全系数,降低溃坝 隐患。而目前现有技术中并没有相关尾矿库的状态监测技术出现。
技术实现要素:
本发明针对现有技术的缺陷,提供了一种面向尾矿库的姿态预警方法和系统,解 决了现有技术中存在的缺陷。 为了实现以上发明目的,本发明采取的技术方案如下: 一种面向尾矿库的姿态预警方法,包括以下步骤: S1:获取尾矿库的三维点阵云数据,使用结构光扫描仪或三维激光扫描仪采集复 杂地理空间的三维点阵云数据;点阵云数据包括:三维坐标、颜色信息和反射强度信息; S2:根据预设模型计算尾矿库的姿态关键点; S3:计算尾矿库姿态关键点的偏差; S4:计算尾矿库姿态关键点的变化趋势。找到尾矿库姿态关键点之后,利用基于模 型的机器学习,可以预判关键点变化趋势、预判线型变化趋势和预判块状变化趋势; S5:尾矿库姿态关键点和变化趋势可视化。 进一步地,步骤S2的子步骤如下: S21:根据历史尾矿库的三维点阵云数据,得到尾矿库姿态关键点的统计模型;获 取尾矿库姿态关键点的统计模型可以采用基于深度学习的多层卷积模型,也可以采用基于 机器学习的支持向量机等。 S22:根据预设关键点的统计模型计算尾矿库的姿态关键点;计算出姿态关键点得 到对象的三维坐标信息。 S23:载入位置突变检测模型,标定新姿态关键点, 4 CN 111598953 A 说 明 书 2/4 页 S24:尾矿库姿态关键点信息输出。尾矿库姿态的关键点的计算模型采用监督、半 监督或无监督方式预先训练完成的深度学习网络模型。 进一步地,深度学习网络模型由卷积层、非线性Relu层、池化层、全连接层的其中 一种构成。深度学习的网络结构为ALexNet、深度残差网络(Deep  Residual  Network, ResNet)和VGGnet(Visual  Geometry  Group  Network)的其中一种。 进一步地,步骤S3的子步骤如下: S31:加载历史尾矿库关键点数据; S32:加载关键点偏差融合计算模型; S33:尾矿库偏差异常处理模型; S34:偏差等级计算。 进一步地,步骤S4的子步骤如下: S41:异常关键点识别,预判关键点变化趋势; S42:异常关键点线性识别,预判线型变化趋势; S43:异常关键点块状识别,预判块状变化趋势; S44:变化趋势置信度评估和分级(点阵/线型/块状)。 本发明还公开了一种基于上述姿态预警方法的尾矿库姿态预警系统,包括:融合 计算单元、尾矿库姿态分析单元、姿态显示和预警单元、操作系统单元、显示单元和网络单 元; 融合计算单元用于计算三维尾矿库的关键点,并计算当前关键点与历史关键点的 偏差。融合计算包含几种实现方式,包括:硬件单元计算融合、计算方法融合或分布式计算, 这里融合计算是指多种计算方法融合。融合计算过程包括:加载多种偏差计算库和权重,当 某种偏差计算库计算失败时,使用次级权重的偏差计算库再次计算,以此类推,融合计算能 够提高系统的稳定性。虽然使用了融合计算,也不能保证融合计算输出三维尾矿库的关键 点偏差值都是合法的,需要S33做一次数值合法性检查。尾矿库姿态分析单元基于三维尾矿 库的关键点偏差值进一步识别尾矿库的变化趋势,为尾矿库灾难预警提供客观数据支持。 尾矿库姿态分析使用卷积神经玩过或机器学习方法识别出三维尾矿库姿态变化的典型变 化趋势(点阵/线型/块状),并且提供隐患区域的判断置信度,高置信度说明是危险区域,低 置信度说明是可疑区域。隐患局域的置信度可用于隐患区域的评估和分析。 姿态显示用于三维尾矿库的姿态变化的典型变化趋势的实时显示。显示出典型可 疑区域(点阵/线型/块状),并以颜色区分置信度 预警单元用于主动通知合法的订阅用户,高置信度的尾矿库危险区域。尾矿库姿 态分析单元使用卷积神经玩过或机器学习方法识别出三维尾矿库姿态变化的典型变化趋 势(点阵/线型/块状),并且提供隐患区域的判断置信度,高置信度说明是危险区域,低置信 度说明是可疑区域。其中高置信度说明是危险区域需要通过多种通信手段通知合法的订阅 用户,以达到提前危险预警的目的。 操作系统单元抽象出硬件的差异,屏蔽硬件差异,提供统一的软件访问接口,操作 系统主要提供硬件访问、网络接口、文件系统、任务调度、功耗管理、显示系统等高级接口。 操作系统是应用软件运行的软硬件基础。流行的操作系统包括windows,mac-os,linux等操 作系统。 5 CN 111598953 A 说 明 书 3/4 页 显示单元用于三维尾矿库的可视化显示,显示的载体是各类显示设备。 网络单元用于本地设备和远程设备或远程服务器之间的通信。 与现有技术相比,本发明的优点在于: 1、利用3D点阵云和基于关键点模型的快速识别尾矿库姿态; 2、识别和检测尾矿库姿态关键点,即可诊断尾矿库的健康状态。 附图说明 图1是本发明实施例面向尾矿库的姿态预警方法的流程图; 图2是本发明实施例尾矿库姿态关键点计算的流程图; 图3是本发明实施例尾矿库姿态变化趋势计算的流程图; 图4是本发明实施例尾矿库姿态偏差和偏差等级的流程图; 图5是本发明实施例尾矿库姿态预警可视化的流程图; 图6是本发明实施例尾矿库姿态关键点示意图; 图7是本发明实施例尾矿库姿态预警系统结构图。
分享到:
收藏