
技术摘要:
本发明总体上涉及生殖医学领域。更具体地,本发明涉及用于通过测定细胞游离的核酸水平和/或测定核酸提取物中至少一种特定核酸序列的存在和/或表达水平来测定胚胎质量的体外无创方法和试剂盒。
背景技术:
目前,在辅助生殖技术(ART)中没有用于测定胚胎质量的可靠的可商购的遗传或 非遗传的程序。尤其是,当转移至合适的子宫环境时,测定胚胎是否能够产生存活后代仍然 是一个重要问题。另一个重要问题是测定将使胎儿以及甚至在孩子存活后发育的胚胎的基 因谱。 选择具有高移植潜力的胚胎是辅助生殖技术(ART)中的主要挑战之一。最初,使用 多胚胎移植(MET)来使怀孕率最大化。然而,胚胎质量的提高和多胎妊娠率的增加造成用于 替代的胚胎数量减少。因此,选择“最佳”胚胎成为关键,尤其强烈推荐使用选择性单胚胎移 植(SET)。因此,需要开发用于胚胎选择的新的客观的方法。在IVF和ICSI条件下选择健康胚 胎的传统方法基于主观的形态学标准,比如破碎化程度和多核的存在、卵裂球的数量和大 小、早期胚胎分裂(Ebner等,2003;Fenwick等,2002)。然而,大多数研究表明,仅具有合适形 态学外观的胚胎不足以预测成功的移植。考虑到形态学评估和细胞遗传学筛选方法的局限 性,现在朝着更复杂、高通量的技术发展,出现“组学”科学,例如转录组学和代谢组学。这些 方法关注各种身体细胞和胚胎培养基。我们的团队使用卵细胞(CC)基因表达的转录组学数 据已经报道了用于预测胚胎和妊娠结果的间接且具有吸引力的方法(Assou等,2011;Assou 等,2008)。我们观察到胚胎形态学方面和CC基因表达谱之间没有关系(Assou等,2010)。其 他研究报道,用Raman或近红外(NIR)光谱检测的旧培养基的代谢谱与个体胚胎的生殖潜能 相关(Seli等,2007;Vergouw等,2008)。他们还表明,来自胚胎的培养基的代谢谱与形态学 无关。 移植率降低的另一个主要原因是移植胚胎的遗传质量差。例如,大多数胚胎损耗 和损失由非整倍体(染色体数量异常)造成,所述非整倍体是致死的,且在所有自然流产和 死胎的大约60%中出现。其他遗传畸形包括染色体非整倍体、扩增、易位、插入/缺失、倒位、 短串联重复序列多态性、微卫星多态性、单核苷酸多态性(SNP)和其他结构异常。遗传畸形 可以导致很多表型疾病,一些甚至是致死的。如果遗传畸形在胚胎中出现,可能发生很多类 型的产前病症和先天性疾病。通过着床前遗传学诊断(PGD)筛选这些畸形非常重要,以确保 选择结构上正常的胚胎和存活移植。然而,目前的方法是创伤性的,可能对胚胎产生损害。 据报道,在生物液体例如血液、腹水、尿液、羊水、粪便、唾液或脑脊液中可以检测 到细胞游离的DNA。各种核酸,例如DNA、RNA、miRNA实际上是分离的,并且以细胞游离的形式 被检测到。发现cfDNA在健康受试者中是可检测的量,且在一些病理性疾病(癌症、心肌梗 3 CN 111549125 A 说 明 书 2/13 页 塞、自身免疫性疾病、脓毒症、创伤……)或特殊生理状态(紧张的工作……)中含量更高。 cfDNA的释放机制知之甚少,但已经表明可能涉及坏死、细胞凋亡、吞噬作用或主动释放。 CfDNA分析是诊断领域中的主动研究领域,尤其是两个领域目前正经历仔细审查。然而,还 没有研究用于测定胚胎质量的cfDNA检测。 发明简述 本发明是基于以下重大发现:培养基中存在一定量的细胞游离的核酸,其中胚胎 在体外受精条件下生长。发明人表明,所述培养基中细胞游离的核酸的水平为胚胎引起怀 孕的能力提供信息。此外,发明人表明,分析所述细胞游离的核酸使得检测和表达特定序列 的基因表达成为可能,为开发用于胚胎遗传识别的无创方法作铺垫。 发明详述 本发明涉及用于测定胚胎质量的体外无创方法,包含由以下组成的步骤:i)提供 其中胚胎生长的培养基样品,ii)从所述样品中提取细胞游离的核酸,和iii)测定核酸提取 物中所述细胞游离的核酸的水平和/或测定核酸提取物中至少一种特定核酸序列的存在 和/或表达水平。 如在本文所用,术语“胚胎”具有本领域中的通常含义,是指受精的卵母细胞或受 精卵。术语“胚胎”还指从受精的卵母细胞或受精卵发育直至5或6天(囊胚期)的所有阶段中 的细胞。可以在经典的体外受精(cIVF)条件下或在卵胞浆内单精子注射(ICSI)程序下干预 所述受精。可以通过本发明的方法评估的胚胎的实例包括1细胞胚胎(也称为受精卵)、2细 胞胚胎、3细胞胚胎、4细胞胚胎、5细胞胚胎、6细胞胚胎、8细胞胚胎等。通常直到且包括16细 胞胚胎,其中任何一个可以通过任何方便的方式获得,例如从体内已经成熟的卵母细胞或 从体外已经成熟的卵母细胞获得。如在本文所用,术语“囊胚”是指在哺乳动物早期胚胎发 育中形成的结构,其在桑葚胚形成之后。它具有随后形成胚胎的内细胞群(ICM)或成胚细 胞,和之后形成胎盘的外层细胞或滋养层。滋养层围绕内细胞群和称为囊胚腔的充满液体 的囊胚空腔。人的囊胚包含70-100个细胞。人的囊胚形成在受精后5/6天开始。 根据本发明,卵母细胞可以来自cIVF或ICSI的自然周期、改良的自然周期或刺激 周期。术语“自然周期”是指雌性或女性产生卵母细胞的自然周期。术语“改良的自然周期” 是指在用与重组FSH或hMG相关的GnRH拮抗剂的轻度卵巢刺激下雌性或女性产生一个或两 个卵母细胞的过程。术语“刺激周期”是指在用与重组FSH或hMG相关的GnRH激动剂或拮抗剂 的刺激下雌性或女性产生一个或多个卵母细胞的过程。 术语“经典的体外受精”或“cIVF”是指在体外卵母细胞被机体外部的精子受精的 过程。当体内受精失败时,IVF是不育的主要治疗。术语“卵胞浆内单精子注射”或“ICSI”是 指其中将单个精子直接注射如卵母细胞的体外受精程序。该程序最常用来克服男性不育因 素,尽管它还可以在当卵母细胞不容易被精子穿透时使用,偶尔作为体外受精的方法,尤其 是与捐精有关的方法。 “测定胚胎质量”是指本发明的方法旨在测定体外受精的情况下,胚胎是否有能力 和/或携带遗传畸形或特定序列。本发明的方法允许评估胚胎成功进行以下之一或两者的 能力:赋予高怀孕率和/或产生健康的人。因此,本发明的方法能够结合着床前遗传学检测 和选择能引起怀孕的最佳胚胎。 术语“有能力的胚胎”(competent embryo)是指具有导致怀孕的高着床率的胚胎。 4 CN 111549125 A 说 明 书 3/13 页 术语“高着床率”是指当转移入子宫时,缺少终止该怀孕的程序或事件的情况下,胚胎在子 宫环境着床并产生随后发育成存活后代的存活胎儿的潜力。 如在本文所用,术语“遗传畸形”是指在个体(例如胚胎)基因组中存在的能引起表 型疾病和致死的任何事件。遗传畸形包括但不限于非整倍体、易位、基因/位点扩增、插入、 缺失、逆转、短串联重复序列(STR)多态性、微卫星多态性、单核苷酸多态性(SNP)、引起遗传 病的单个基因突变,或其组合。特别地,根据本方法可以检测任何基因遗传病。例如,基因改 变可以包括在一个或多个基因中的已知改变:CFTR、因子VIII(F8基因)、β珠蛋白、血色病、 G6PD,神经纤维瘤病、GAPDH、β淀粉样蛋白和丙酮酸激酶。这些基因的序列和常见突变(例如 单核苷酸多态性或SNP)是已知的。可以检测到其他遗传畸形,例如涉及在人染色体中缺失 的、以易位或倒位移动的、或在染色体复制中重复的序列的那些,其中所述序列在胎儿遗传 物质的已知遗传病中被表征。例如,染色体非整倍体,如唐氏综合征(21三体)、爱德华兹综 合征(18三体)、帕陶氏综合征(13三体)、特纳氏综合征(45X0)、克氏综合征(具有2个X染色 体的男性)、普拉德-威利综合征和迪格奥尔格综合征。可以在OMIM数据库中找到已知遗传 畸形的列表(http://omim.org/)。 本发明的方法优选应用于女性,但理论上也可以应用于其他哺乳动物(例如灵长 类、狗、猫、猪、牛、鼠……)。 如在本文所用,术语“核酸”具有本领域的通常含义,是指编码或非编码的核酸序 列。核酸包括DNA(脱氧核糖核酸)和RNA(核糖核酸)。因此,核酸的实例包括但不限于DNA、 mRNA、tRNA、rRNA、tmRNA、miRNA、piRNA、snoRNA和snRNA。根据本发明,核酸可来源于胚胎的 核或胚胎的线粒体室。“细胞游离的核酸”是指由胚胎释放的在培养基中存在的核酸,其中 胚胎在体外受精或卵胞浆内单精子注射(ICSI)之后生长。 在一个具体的实施方案中,当胚胎达到囊胚期(对应于胚胎发育的第5或6天)时, 制备样品。可以使用本领域公知的任何方法制备其中胚胎在体外受精或卵胞浆内单精子注 射(ICSI)之后生长的培养基样品。本发明的一个必要特征是,在样品制备期间,胚胎保持存 活。不使用裂解酶或基于化学剂的裂解液来维持胚胎的完整性。本发明的方法是完美的无 创方法,其仅基于胚胎能够在培养基中通过尚未确定的机制释放核酸这一事实。 本领域技术人员可以使用本领域公知的任何方法从制备的样品中提取游离的细 胞核酸。例如,可以使用在实施例中所述的方法。 在一个具体的实施方案中,本发明的方法包括由以下组成的步骤:i)测定核酸提 取物中的核酸水平,ii)将步骤i)中测定的水平与参考值相比较,和iii)当在步骤i)中测定 的水平低于参考值时,断定胚胎是有能力的。 可以通过本领域公知的各种技术来测定核酸水平。在一个具体的实施方案中,可 以进行定量PCR来测定DNA水平,例如在El Messaoudi等,2013;Mouliere等,2013;Thierry 等,2013和WO2012/028746中描述的那些。特别地,可以如实施例所述测定核酸水平。 在一个具体的实施方案中,参考值是在胚胎发育第3天在胚胎培养基中测定的核 酸水平。因此,在培养发育第3天和第5或6天(囊胚期)之间水平降低表示胚胎是有能力的。 在一个具体的实施方案中,参考值是可以实验上、经验上或理论上确定的阈值或 截止值。也可以基于如本领域普通技术人员将认可的已有的实验和/或临床条件任意选择 阈值。必须确定阈值以获得根据试验功能和收益/风险平衡(假阳性和假阴性的临床结果) 5 CN 111549125 A 说 明 书 4/13 页 的最佳灵敏性和特异性。通常,可以使用基于实验数据的接受器工作特性(ROC)曲线来测定 最佳灵敏性和特异性(以及阈值)。优选的,本领域技术人员可以将核酸水平(根据本发明的 方法获得)和确定的阈值相比较。在本发明的一个实施方案中,阈值来源于在胚胎培养基中 测定的核酸水平(或比例,或得分),所述培养基源自正在经历IVF或ISCI的一个或多个患 者。此外,在建立这些阈值时也可以使用正在经历IVF或ISCI的患者的适当储存的历史胚胎 培养基中核酸水平(或比例,或得分)的回顾性测量。 在一个具体的实施方案中,本发明的方法包括由以下组成的步骤:i)检测核酸提 取物中的至少一个突变,和ii)当检测到突变时,断定胚胎携带遗传畸形。 用于检测核酸,尤其是DNA或mRNA中的突变的一般技术包括但不限于限制性片段 长度多态性、杂交技术、测序、外切酶抗性、微测序、使用ddNTP的固相延伸、使用ddNTP的溶 液中的延伸、寡核苷酸分析、用于检测单核苷酸多态性的方法例如动态等位基因特异性杂 交、连接链反应、迷你测序、DNA“芯片”、与PCR或分子信标一起的使用单或双标记探针的等 位基因特异性寡核苷酸杂交,和其他。 通常,在扩增之后检测突变。例如,可以将分离的RNA进行偶联的逆转录和扩增,如 逆转录并通过聚合酶链式反应扩增(RT-PCR),使用对于突变位点具有特异性的或能够扩增 包含突变位点的区域的特异性寡核苷酸引物。根据第一个选择,可以选择引物退火的条件 以确保特异性逆转录(当适用时)和扩增;从而扩增产物的外观能够判断特定突变的存在。 否则,可以将RNA逆转录并扩增,或将DNA扩增,之后通过用合适探针杂交或通过直接测序或 本领域已知的任何其他合适的方法来检测扩增序列中的突变位点。例如,可以将从RNA获得 的cDNA克隆并测序以鉴定突变。 特别地,测序是可以在本发明情况中使用的理想技术。本领域技术人员熟知用于 测序多核苷酸的几种方法。这些包括但不限于Sanger测序(也称为双脱氧测序)和由 Metzger(Metzger ML 2005,Genome Research 1767)综述的各种边测序边合成(SBS)方法、 杂交测序、连接测序(例如WO 2005/021786)、降解测序(例如美国专利号5,622 ,824和6, 140,053)、纳米孔测序。优选的,在多元分析中,优选深度测序。术语“深度测序”是指平行测 序多个核酸的方法。参见例如Bentley等,Nature 2008,456:53-59。深度测序可以使用由 Roche/454(Margulies等,2005a)、Illumina/Solexa(Bentley等,2008)、Life/APG(SOLiD) (McKernan等,2009)和Pacific Biosciences(Eid等l,2009)生产的领先的可商购的平台。 例如,在454方法中,将待测序的DNA片段化并提供适配子,或用包含适配子的引物通过PCR 扩增DNA片段。适配子是与DNA捕获珠结合以及与乳液PCR扩增引物和测序引物退火所需的 核苷酸25聚体。将DNA片段制成单链,并以只允许一颗珠子连接一个DNA片段的方式将其连 接至DNA捕获珠上。然后,在油包水混合物中乳化包含珠子的DNA,产生只包含一颗珠子的微 反应器。在该微反应器内,片段被PCR扩增,每颗珠子产生几百万的拷贝数。PCR之后,破坏乳 剂,将珠子加载至皮可滴定板上。皮可滴定板的每个孔可以只包含一颗珠子。将测序酶添加 至孔中,核苷酸以固定的顺序流过孔。加入核苷酸导致释放焦磷酸,其催化产生化学发光信 号的反应。将该信号通过CCD相机记录,并使用软件将该信号翻译成DNA序列。在Illumina方 法(Bentley(2008))中,将单链的连有适配子的片段连接至光学透明的表面,并进行“桥扩 增”。该程序产生几百万集群,每个包含独特DNA片段的拷贝。添加DNA聚合酶、引物和四种标 记的可逆终止核苷酸,用激光荧光使表面显像以测定标记的位置和性质。然后去除保护基 6 CN 111549125 A 说 明 书 5/13 页 团,并将该过程重复几个循环。SOLiD方法(Shendure(2005))与454测序相似,在珠子表面扩 增DNA片段。测序涉及连接和检测标记探针的循环。目前正在开发用于高通量测序的几种其 他技术。这种实例有Helicos system(Harris(2008))、Complete Genomics(Drmanac (2010))和Pacific Biosciences(Lundquist(2008))。因为这是极速发展的技术领域,高通 量测序方法在本发明中的应用性对于本领域技术人员而言是显而易见的。 在一个具体的实施方案中,本发明的方法包括由以下组成的步骤:i)测定至少一 种特异性核酸序列的水平,ii)将步骤i)测定的水平与参考值相比较,和iii)当在步骤i)测 定的水平与参考值不同时(例如较低或较高,取决于查看的核酸),断定胚胎携带遗传畸形。 可以通过任何各种熟知的方法评估核酸(尤其是基因、miRNA、snRNA和snoRNA)的 表达水平。通常,制备的核酸可用于杂交或扩增试验,其包括但不限于Southern或Northen 分析、聚合酶链式反应分析,如定量PCR(Taqman)和探针阵列如GeneChip(TM)DNA阵列 (AFFYMETRIX)。有利地,核酸表达水平的分析涉及核酸扩增的过程,例如通过RT-PCR(美国 专 利号 4 ,6 8 3 ,2 0 2 所示的 实 验性实 施方案) 、连接酶 链式 反应 ( B A R A N Y , Proc .Natl .Acad .Sci .USA ,vol .88 ,p:189-193 ,1991)、自持续序列复制(GUATELLI等, Proc .Natl .Acad .Sci .USA ,vol .57 ,p:1874-1878 ,1990)、转录扩增系统(KWOH等,1989 , Proc .Natl .Acad .Sci .USA ,vol .86 ,p:1173-1177 ,1989)、Q-β复制酶(LIZARDI等 , Biol.Technology,vol.6,p:1197,1988)、滚环复制(美国专利号5,854,033)或任何其他核 酸扩增方法,然后用本领域技术人员公知的技术检测扩增的分子。优选实时定量或半定量 RT-PCR。在一个具体的实施方案中,测定包括将样品与选择性试剂例如探针或引物杂交,从 而检测核酸的存在或测量核酸的量。可以通过任何合适的设备,例如板、微滴定盘、试管、 孔、玻璃、柱等进行杂交。与本文的目标核酸显示序列互补或同源的核酸可用作杂交探针或 扩增引物。应理解,这种核酸不需要相同,但通常与相当大小的同源区至少约80%一致,更 优选85%一致,甚至更优选90-95%一致。在一些实施方案中,将核酸与合适的手段,例如可 检测的标记组合用于检测杂交将是有利的。本领域已知各种合适的指示剂,包括荧光、放射 性、酶或其他配体(例如抗生物素蛋白/生物素)。探针和引物对其杂交的核酸是“特异性” 的,即它们优选在高度严格杂交条件(对应于最高的解链温度-Tm-,例如50%甲酰胺、5x或 6x SCC。lx SCC是0 .15M NaCl、0 .015M柠檬酸钠)下杂交。很多定量分析可从Qiagen (S.A.Courtaboeuf ,France)或Applied Biosystems(Foster City,USA)商购。核酸的表达 水平可以以绝对表达谱或归一化的表达谱表示。通常,通过矫正目标核酸的绝对表达谱将 表达谱归一化:将其表达与持续表达的不相关核酸,例如管家基因mRNA的表达相比较。用于 归一化的合适mRNA包括管家mRNA,例如U6、U24、U48和SI8。这种归一化允许将一个样品例如 患者样品中的表达谱与另一个样品比较,或来自不同来源的样品之间的比较。 探针或引物通常用可检测分子或物质(例如荧光分子、放射性分子或本领域已知 的任何其他标记)来标记。通常提供(直接或间接)信号的标记是本领域已知的。术语“标记” 意欲涵盖通过偶联(即物理连接)可检测物质直接标记探针和引物以及通过与直接标记的 另一种试剂反应间接标记。可检测物质的实例包括但不限于放射性试剂或荧光(如异硫氰 酸荧光素(FITC)或藻红蛋白(PE)或吲哚菁(Cy5))。 参考值可如上所述确定,且将取决于其表达水平的确定是断定胚胎携带遗传畸形 或核酸特定序列所需要的核酸。 7 CN 111549125 A 说 明 书 6/13 页 本发明的方法尤其适用于实现临床决定。如在本文所用,术语“临床决定”是指采 取或不采取行动的任何决定,所述行动的结果影响胚胎健康或存活。特别地,在本发明的情 况下,临床决定是指是否将胚胎植入患者子宫的决定。临床决定还可以指进行进一步测试、 采取行动缓解不期望的表型、或采取行动为具有畸形的孩子的出生做准备的决定。特别地, 上述方法将因此帮助胚胎学家避免将妊娠结果潜力差的胚胎转移入子宫。上述方法还尤其 适用于避免多胎妊娠,其通过选择能够导致着床和怀孕的有能力的胚胎从而在每个周期可 以转移较少的胚胎,从而降低多胎妊娠发生率。 本发明的方法尤其适用于提高遗传畸形风险最低的孩子的妊娠结果。因此,本发 明还涉及提高患者的妊娠结果的方法,包括由以下组成的步骤:i)提供多个胚胎,ii)根据 本发明的方法测定胚胎质量,和iii)选择携带遗传畸形风险最小的最有能力的胚胎,和iv) 将步骤iii)选择的胚胎植入所述患者的子宫。 本发明还涉及用于进行上述方法的试剂盒,其中所述试剂盒包含用于测定细胞游 离的核酸的水平的装置和/或用于测定至少一种特定核酸的表达水平的装置和/或用于检 测核酸提取物中至少一个突变、一个SNP或特定序列的装置。通常,试剂盒包括探针、引物微 阵列或如上所述的微阵列。例如,试剂盒可以包含一组如上定义的预先标记的探针。或者, 探针可以是未标记的,用于标记的成分可以包括在试剂盒中单独的容器中。试剂盒可以进 一步包含杂交试剂或特定杂交方案所需的其他合适包装的试剂和材料,包括固相基质(如 果适用)和标准。或者,本发明的试剂盒可以包含扩增引物(如茎环引物),其可以预先标记 或可以包含亲和纯化或附着部分。试剂盒可以进一步包含扩增试剂,以及特定扩增方案所 需的其他合适包装的试剂和材料。 本发明将通过以下附图和实施例进一步说明。 然而,这些实施例和附图不应当以限制本发明范围的任何方式理解。 附图说明 图1:来自两位患者的数个第3天的胚胎的培养基中cdDNA浓度。 图2:来自9位患者的数个第5/6天的胚胎的培养基中cdDNA浓度。 图3:来自两位患者的数个第3天和第5天的胚胎的培养基中cdDNA浓度。黑色柱状 图:D5/6浓度。白色柱状图:D3浓度。 图4A:相对于胚胎等级的第3天和第5/6天之间cfDNA浓度的差异。系列1柱状图: D3-D5/6浓度(ng/mL cfDNA);系列2柱状图:关于生长等级的排名(1-10)。从HSC患者的一系 列胚胎中获得cfDNA浓度值。 图4B:相对于胚胎等级的cfDNA浓度。系列1柱状图:D3-D5/6浓度(ng/mL cfDNA); 系列2柱状图:关于生长等级的排名(1-10)。从HSC患者的一系列胚胎中获得cfDNA浓度值。 图5:培养基中cfDNA和妊娠结果之间的关系。 比较来自妊娠阳性患者和妊娠阴性患者的第5/6天的胚胎培养基中平均cfDNA数 量的柱状图。 图6A和6B:表示在卵巢、睾丸、MII期卵母细胞、第3天的胚胎、第5/6天的囊胚、滋养 层和子宫内膜样品中基因的微阵列信号值的柱状图。MII期卵母细胞、第3天的胚胎、第5/6 天的囊胚、滋养层和子宫内膜样品的微阵列数据获得自我们的团队,卵巢和睾丸的微阵列 8 CN 111549125 A 说 明 书 7/13 页 数据通过临时登录号(GPL570)从基因表达数据库(GEO)获得。
技术实现要素:
材料&方法 IVF程序 使女性进行促性腺激素释放激素(Gn-RH)长期或拮抗剂方案治疗,随后用hMG(人 绝经期促性腺激素)或重组促卵泡激素(FSH)刺激卵巢。在经阴道超声检查下,当至少三个 卵泡达到平均直径17mm时,施用5000IU hCG。然后,36h后,通过超声引导的经引导穿刺获得 卵母细胞。按指示使用常规IVF或ICSI。受精或微注射卵母细胞16-20h后,通过倒置显微镜 两个极体下两个不同原核的存在确认受孕。然后将受精卵单独置于新鲜的用矿物油覆盖的 30μl培养基液滴中(G1.5,Vitolife,Sweden),并在提供5%氧气环境的三气培养箱中保持。 在所有时间,所有胚胎在单独液滴中培养。将胚胎置于扩展培养基中,持续直到第5天。将 G2.5培养基(Vitolife,Sweden)用于扩展培养。 定量本发明培养基中的cfDNA 取样胚胎培养基 取出胚胎后,将培养基单独置于标记的冷冻管中,然后用随机分配的登录号再次 标记。将收集的样品立即冷冻并于-80℃储存。还收集不含胚胎的在相同条件下孵育的对照 样品。可以从培养基取样最多50μl。 提取cfDNA 对于第3天或第5/6天样品,用170μl PBS 1X将30μl初始体积补充至200μl。对于第 5天样品,用190μl PBS 1X将10μl初始体积补充至200μl。随后,立即处理样品用于DNA提取。 根据“血液和体液方案”使用QIAmp DNA Mini Blood试剂盒(Qiagen,Hilden,Germany)从 200μl样品中提取cfDNA。将DNA样品保存于-20℃直至使用。 通过Q-PCR定量cfDNA 根据MIQE指南进行方法和数据描述。在CFX 96TM实时PCR检测系统上,使用CFX管 理TM软件(Bio-Rad ,Hercules ,CA),在25μl反应体积中重复进行q-PCR扩增至少两次。每个 PCR混合物由12 .5μl PCR混液(Bio-Rad Supermix SYBR Green)、2 .5μl各扩增引物 (0.3pmol/μl)、2.5μl PCR分析水和5μl DNA提取物组成。热循环由三个重复步骤组成:95℃ 的热启动聚合酶活化变性步骤3分钟,然后是95℃10秒的40个重复循环,然后60℃30秒。通 过将温度从55℃升至90℃,每0.2℃平板读数来获得解链曲线。使用来自人胎盘细胞的基因 组DNA(Sigma ,Munich,Germany)的系列稀释液作为定量的标准,并用 2.0荧光计 (Life Technologies)分析它们的浓度和质量。每轮Q-PCR包含常规的质量阴性和阳性对 照。各样品分析三次,且各检测重复至少一次。将所得的cfDNA浓度用标准曲线归一至精确 浓度。两次实验(n=12)的由cfDNA提取和Q-PCR分析造成的浓度变异系数计算为24%。用表 1所述的引物系统(KRAS Bl inv k有义:SEQ ID NO:1;和KRAS B2inv k反义:SEQ ID NO:2) 进行定量样品中的cfDNA并实现标准曲线。通过试验测定的浓度值的变异系数是24%。 9 CN 111549125 A 说 明 书 8/13 页 表1:用于定量cfDNA的Intplex引物 引物设计 所选择引物的序列和特征示于表1。使用Primier 3软件设计引物,并用核酸折叠 软件(mfold和oligo Analyzer 1.2)检查所有序列的自分子或分子间退火。我们用BLAST程 序进行局部比对分析以确认所设计的引物的特异性。合成寡核苷酸,用Eurofins (Ebersberg ,Germany)在高效液相色谱(HPLC)上纯化,并通过基质辅助激光解吸电离飞行 时间(MALDI-TOF)进行寡核苷酸的质量控制。 将Q-PCR系统设计为能够定量人基因组的两个拷贝中存在的序列。它能够以高特 异性和灵敏性定量在一个等位基因中的该序列。通过使用等位基因特异性阻断PCR和使用 相同引物获得更高的特异性(Mouliere,2011)。该方法允许以0.005个突变/WT的比例区分 仅有一个核苷酸差异的两个序列。因此,检测并定量特定序列对应于区分WT序列和具有几 个核苷酸差异的序列(多达仅一个核苷酸差异,例如具有点突变或SNP的序列)。因此,如在 本文所示的胚胎培养基中cfDNA定量的描述表明该方法检测单核苷酸突变、SNP或其他遗传 改变的存在的潜力。 当靶向核基因组中的重复序列例如莱恩序列或线粒体序列时,可以获得更高浓度 值。 结果 检测胚胎培养基中的cfDNA 靶序列在每个二倍体细胞的核基因组中有2个拷贝。在D3或D5/6的胚胎培养基中 可以明显检测到cfDNA(图1)。该试验可以检测低至1.5ng/ml培养基,因此在培养基中发现 最小2个GE拷贝。在D5/6培养基中观察到最多27ng/ml cfDNA或36个GE。注意,这些数字可能 与胚胎发育相关。因此,这些数据揭示了检测特定DNA序列(最多每个二倍体细胞2个拷贝) 的存在从而潜在存在纯合或杂合的遗传或表观遗传改变的可能性。可以在各患者和所有样 品中明显检测到cfDNA(图2)。 在样品间有显著(1log)的内外变化,支持动态测量允许样品间的比较这一概念 (图3)。 CfDNA和体外胚胎结果的关系 还研究了胚胎培养基中的cfDNA含量与体外胚胎发育之间的关系: 可以在11个胚胎的培养基中比较在D3和D5/6测定的cfDNA浓度。如(图4A)所示,D3 和D5/6之间的cfDNA浓度的差异值分别随着通过形态学标准评估的良好的胚胎发育而增 长。如(图4B)所示,cfDNA浓度值与良好的胚胎发育成反比。因此,D5/6cfDNA浓度和D3-D5/6 浓度似乎均作为体外胚胎发育标志物下降。 选择从在第3天发育成良好质量的8细胞胚胎并在第5/6天产生囊胚期的胚胎培养 基分离的cfDNA,并将其分成三组:i)来自在第5/6天发育成良好囊胚质量(等级4AA、4AB或 10 CN 111549125 A 说 明 书 9/13 页 4BA,5AA、5AB或5BA)并导致妊娠的第3天胚胎的cfDNA,ii)来自在第5/6天发育成中等囊胚 质量(等级4BB或5BB)的第3天胚胎的cfDNA,iii)来自在第5/6天发育成不良囊胚质量(等级 4CC或5CC)的第3天胚胎的cfDNA(参见表2的患者HSC)。来自在第5/6天发育成良好囊胚质量 (等级4AA、4AB、4BA)并导致妊娠的第3天胚胎的培养基中cfDNA的数量在第3天和第5/6天分 别为22.16ng/ml和2.75ng/ml(降低88%)。第3天和第5/6天之间的cfDNA值的变化在中等级 别下降至7.55ng/ml和1.80ng/ml(降低76%),在不良囊胚级别下降至6.46ng/ml(第3天)和 3.78(第5/6天)(降低41%)(表3)。有趣的是,该变化在裂解胚胎中非常低,为8.36ng/ml(第 3天)和5.57(第5/6天)(降低33%)。此外,根据患者结果评估第5/6天的胚胎培养基中的 cfDNA数量。我们表明,来自非妊娠患者的第5/6天的胚胎培养基中的cfDNA高于妊娠患者 (图5)。 可以使用胚胎培养基中的cfDNA检测男性胚胎 可使用基因例如TSPY1(睾丸特异性蛋白,Y连锁1)和RPS4Y1(核糖体蛋白S4,Y连锁 1)来揭示胚胎性别。这为从已知有风险患X连锁疾病的夫妻筛选胚胎开辟了适当的策略。使 用高密度寡核苷酸Affymetrix HG-U133P微阵列芯片来研究在XX和XY样品中TSPY1和 RPS4Y1的表达。我们的结果显示,TSPY1和RPS4Y1可证明作为通过扩增在胚胎培养基中的这 些基因(cfDNA)的多拷贝来确定胚胎性别的生物标志物是有价值的(图6A和6B)。该方法可 适用于位于Y染色体上的其他基因:DDX3Y(DEAD(Asp-Glu-Ala-Asp)盒多肽3,Y连锁)、 EIF1AY(真核翻译)和Y染色体基因(SRY)。 表2:与在胚胎培养基中检测的cfDNA相关的患者(HSC)的ICSI结果。根据Gardner 和Schoolcraft 1999的形态学标准,由胚胎学家记录来自每个成熟MII卵母细胞(受精、胚 胎分裂和囊胚发育)的数据。 11 CN 111549125 A 说 明 书 10/13 页 表3.培养基中cfDNA和体外胚胎发育的关系。从第3天的良好8细胞胚胎获得第5/6 天的三个等级的囊胚(良好(AA)、中等(BB)和不良质量(CC))。结果表明在第3天和第5/6天 12 CN 111549125 A 说 明 书 11/13 页 之间培养基中cfDNA的变化根据囊胚等级而不同。 参考文献 在本申请中,各种文献描述了本发明涉及的领域的现状。这些文献的公开在此通 过引用并入本公开。 Antonatos,D.,Patsilinakos,S.,Spanodimos,S.,Korkonikitas,P.and Tsigas, 13 CN 111549125 A 说 明 书 12/13 页 D .(2006) .Cell-free DNA levels as a prognostic marker in acute myocardial infarction.Ann N Y Acad Sci 1075,278-81. Arnalich,F.,Maldifassi,M.C,Ciria,E.,Quesada,A.,Codoceo,R.,Herruzo,R., Garcia-Cerrada ,C ,Montoya ,F .,Vazquez ,J .J .,Lopez-Collazo ,E .et al . (2010) .Association of cell-free plasma DNA with perioperative mortality in patients with suspected acute mesenteric ischemia.Clin Chim Acta 411,1269-74. Assou ,S .,Boumela ,I .,Haouzi ,D .,Anahory ,T .,Dechaud ,H .,De Vos ,J .and Hamamah,S.(2011) .Dynamic changes in gene expression during human early embryo development:from fundamental aspects to clinical applications .Hum Reprod Update 17,272-90. Assou,S.,Haouzi,D.,De Vos,J.and Hamamah,S.(2010) .Human cumulus cells as biomarkers for embryo and pregnancy outcomes.Mol Hum Reprod 16,531-8. Assou,S.,Haouzi,D.,Mahmoud,K.,Aouacheria,A.,Guillemin,Y.,Pantesco,V., Reme,T.,Dechaud ,H.,De Vos,J.and Hamamah,S.(2008) .A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells:a proof of concept study.Mol Hum Reprod 14,711-9. Czamanski-Cohen ,J .,Sarid ,O .,Cwikel ,J .,Lunenfeld ,E .,Douvdevani ,A ., Levitas,E.and Har-Vardi,I.(2013) .Increased plasma cell-free DNA is associated with low pregnancy rates among women undergoing IVF-embryo transfer.Reprod Biomed Online 26,36-41. Destouni,A.,Vrettou,C,Antonatos ,D.,Chouliaras ,G.,Traeger-Synodinos , J.,Patsilinakos,S.,Kitsiou-Tzeli,S.,Tsigas,D.and Kanavakis,E.(2009) .Cell-free D N A l e v e l s i n a c u t e m y o c a r d i a l i n f a r c t i o n p a t i e n t s d u r i n g hospitalization.Acta Cardiol 64,51-7. Ebner ,T .,Moser ,M .,Sommergruber ,M .,Gaiswinkler ,U .,Wiesinger ,R ., Puchner, M.and Tews,G.(2003) .Presence,but not type or degree of extension,of a cytoplasmic halo has a significant influence on preimplantation development and implantation behaviour.Hum Reprod 18,2406-12. European patent PCT N°EP2011/065333AR Thierry and F.Molina,Analytical methods for cell free nucleic acids and application,5th of September 2011. Fenwick ,J .,Platteau ,P .,Murdoch ,A .P .and Herbert ,M .(2002) .Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro.Hum Reprod 17,407-12. Goldshtein H ,Hausmann MJ ,Douvdevani A .(2009) .A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids.Ann Clin Biochem.46(Pt 6):488-94. Lazar,L.,Rigo,J.,Jr.,Nagy,B.,Balogh,K.,Mako,V.,Cervenak,L.,Mezes,M., Prohaszka ,Z.and Molvarec,A.(2009) .Relationship of circulating cell-free DNA 14 CN 111549125 A 说 明 书 13/13 页 levels to cell-free fetal DNA levels,clinical characteristics and laboratory parameters in preeclampsia.BMC Med Genet 10,120. Li CN ,Hsu HL ,Wu TL ,Tsao KC ,Sun CF ,Wu JT .(2003) .Cell-free DNA is released from tumor cells upon cell death:a study of tissue cultures of tumor cell lines.J Clin Lab Anal.17(4):103-7. Mouliere ,F .,Robert B ,Arnau Peyrotte E ,Del Rio M ,Ychou M ,Molina F , Gongora C,Thierry AR.(2011) .High Fragmentation Characterizes Tumour-Derived Circulating DNA.Plos One 6. Mussolin,L.,Burnelli,R.,Pillon,M.,Carraro,E.,Farruggia,P.,Todesco,A., Mascarin ,M .and Rosolen ,A .(2013) .Plasma cell-free DNA in paediatric lymphomas.J Cancer 4,323-9. Schwarzenbach,H.,Hoon,D.S.B.&Pantel,K.(2011) .Cell-free nucleic acids as biomarkers in cancer patients.Nature Reviews Cancer 11,426-437. Seli ,E .,Sakkas ,D .,Scott ,R .,Kwok ,S .C ,Rosendahl ,S .M .and Burns ,D .H . (2007) .Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization.Fertil Steril 88,1350-7. Thierry,A.R .,Mouliere F,Gongora C,Oilier J ,Robert B,Ychou M,Del Rio M,Molina F.(2010) .Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts.Nucleic Acids Res 38,6159-6175. Vergouw,C.G.,Botros,L.L.,Roos,P.,Lens,J.W.,Schats,R.,Hompes,P.G., Burns ,D .H .and Lambalk ,C .B .(2008) .Metabolomic profiling by near- infrared spectroscopy as a tool to assess embryo viability:a novel ,non- invasive method for embryo selection.Hum Reprod 23,1499-504. Wroclawski ,M .L .,Serpa-Neto ,A .,Fonseca ,F .L .,Castro-Neves-Neto ,O ., Pompeo,A.S.,Machado,M.T.,Pompeo,A.C.and Del Giglio,A.(2013) .Cell-free plasma DNA as biochemical biomarker for the diagnosis and follow-up of prostate cancer patients.Tumour Biol.May 29. Yakimovich A,Gumpert H,Burckhardt CJ,Lutschg VA,Jurgeit A,Sbalzarini IF, Greber UF .(2012) .Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model .J Virol.Sep;86(18) 15 CN 111549125 A 序 列 表 1/1 页 16 CN 111549125 A 说 明 书 附 图 1/7 页 图1 17 CN 111549125 A 说 明 书 附 图 2/7 页 图2 18 CN 111549125 A 说 明 书 附 图 3/7 页 图3 19 CN 111549125 A 说 明 书 附 图 4/7 页 图4A 图4B 20 CN 111549125 A 说 明 书 附 图 5/7 页 图5 21 CN 111549125 A 说 明 书 附 图 6/7 页 图6A 22 CN 111549125 A 说 明 书 附 图 7/7 页 图6B 23