logo好方法网

一种基于可重复使用飞行器的全周期载人火星探测方法


技术摘要:
本发明提供一种基于可重复使用飞行器的全周期载人火星探测方法,包括如下步骤:S1、首次飞行过程:在首次飞行过程中完成飞行阶段的各飞行器建造;S2、后续飞行过程:在后续飞行过程中利用所述步骤S1中首次飞行过程的各飞行器执行飞行任务。本发明提供的基于可重复使用  全部
背景技术:
火星由于其表面环境与地球具有较大的相似性,引起人类的广泛关注。载人火星 探测一直是人类深空探测的一个热点,目前正在策划实现载人火星探测。对于载人火星探 测而言,由于面临需要大质量的物资发射,以及人员往返运输,火星探测的规模一直较大。 目前,载人火星探测的顶层方案较多,但大都集中在首次或前几次载人火星飞行上,且每次 载人飞行的规模都在约800~1200t左右。如NASA提出的DRM系列计划,都采用一次性飞行器 执行任务;ESA的Aurora计划也采用一次性飞行器执行任务。SpaceX提出采用可重复使用的 星船执行任务,但该飞行器直接由地面发射入轨,整个飞行器执行全周期任务,飞行器质量 规模较大,每次任务的发射规模基本相同。从整个载人火星探测的周期看,上述方案都存在 每次探测任务发射规模较大的问题,后续发射规模难以有效减少,持续大规模载人火星探 测时的发射成本较高。因此,有必要从全周期角度考虑,降低载人火星探测的成本。
技术实现要素:
针对上述火星探测规模庞大的问题,以持续进行载人火星探测为基本假设,从整 个探测过程全周期生命成本最优的角度,本发明提出一种基于可重复使用飞行器的全周期 载人火星探测方法。 为了达到上述技术效果,本发明的技术方案是:提供一种基于可重复使用飞行器 的全周期载人火星探测方法,包括如下步骤: S1、首次飞行过程: 在首次飞行过程中完成飞行阶段的各飞行器建造; S2、后续飞行过程: 在后续飞行过程中利用所述步骤S1中首次飞行过程的各飞行器执行飞行任务。 进一步的,在所述步骤S1中的首次飞行过程和步骤S2中的后续飞行过程中,每次 地球至火星的飞行过程均分为至少3个阶段;不同阶段采用不同的可重复使用飞行器执行 飞行任务。 进一步的,所述不同飞行器通过轨道交会对接的方式实现物资及人员转换。 进一步的,所述重复使用飞行器的推进剂补给依据就进加注的原则,在飞行过程 中由各补给点进行推进剂补加。 进一步的,所述地球至火星的飞行过程分为近地飞行阶段、地火飞行阶段以及火 星飞行阶段;整个任务阶段选用3个可重复使用飞行器,分别为近地往返飞行器、地火往返 飞行器和火表往返飞行器;所述近地往返飞行器负责近地飞行阶段由地表到近地飞行,分 别停泊在地表和近地GTO轨道;地火往返飞行器负责地火飞行阶段由近地LEO轨道到火星环 5 CN 111572815 A 说 明 书 2/6 页 火捕获轨道的飞行,往返于两条轨道之间;火表往返飞行器负责火星飞行阶段由火星捕获 轨道到火星表面的飞行,往返于火星表面与火星捕获轨道之间。 进一步的,所述步骤S1中,首次飞行过程具体包括如下步骤: S1-1、地面分批发射,分别发射近地往返飞行器、地火往返飞行器以及火表往返飞 行器,在LEO圆轨道完成在轨组装; S1-2、近地往返飞行器携带地火往返飞行器、火表往返飞行器进入GTO轨道,然后 分离; S1-3、近地往返飞行器停留在GTO轨道; S1-4、地火往返飞行器携带火表往返飞行器进入奔火飞行,进入火星捕获轨道,地 火往返飞行器与火表往返飞行器分离; S1-5、地火往返飞行器驻留在火星捕获轨道; S1-6、地火往返飞行器与航天员着陆火星表面 S1-7、航天员在火星表面开始活动; S1-8、航天员乘坐火表往返飞行器到达火星捕获轨道; S1-9、火表往返飞行器与地火往返飞行器对接,补加推进剂,航天员转移到地火往 返飞行器; S1-10、地火往返飞行器进入奔地飞行; S1-11、地火往返飞行器与近地往返飞行器对接,航天员转移到近地往返飞行器; S1-12、近地往返飞行器携带航天员返回地表,地火往返飞行器停留在GTO轨道,等 待下一次任务。 进一步的,所述步骤S2中,后续飞行过程中,由近地往返飞行器携带推进剂、人员 及物资从近地起飞,对地火往返飞行器进行推进剂补加;地火往返飞行器接受推进剂补加 后,携带人员及物资飞往火星轨道;在火星停泊轨道,地火往返飞行器与火表往返飞行器交 会对接,进行推进剂及人员物资交换,火表往返飞行器携带人员及物资下降;返回地球过程 中,由火表往返飞行器从火星表面携带推进剂,对地火往返飞行器进行推进剂补加,地火往 返飞行器携带人员及物资返回地球停泊轨道,并由近地往返飞行器返回地球表面。 进一步的,利用月球作为中转站,并利用月球实现物资补给;所述地球至火星的飞 行过程分为近地发射阶段、地月转移阶段、月面上升下降阶段、月火飞行阶段和火表飞行阶 段;各阶段所使用的可重复使用飞行器分别为重型运载、月火转移推进级、轨道居住舱、载 人飞船和火星表面下降着陆器。 进一步的,所述步骤S1中,首次飞行过程具体包括如下步骤: S1-1、地面首次进行发射,包括月火转移推进级、火星下降着陆器,火星下降着陆 器携带火星表面ISRU设备以及火星居住舱生产所需的物资; S1-2、月火转移推进级与火星下降着陆器在近地轨道组装,携带所有着陆火星物 资进入奔月轨道; S1-3、在L2点,月火转移推进级与月球轨道站交会对接,形成组合体飞行,利用月 球极地冰生产的水,对月火转移推进级进行物资补给; S1-4、月火转移推进级携带火星下降着陆器,进入奔火轨道,飞向火星; S1-5、月火转移推进级与火星下降着陆器在环火轨道分离,火星下降着陆器着陆 6 CN 111572815 A 说 明 书 3/6 页 到火星表面; S1-6、能源及ISRU设备在火表展开,开始提供能量,生产推进剂,建造火星表面人 员居住舱; S1-7、地面发射轨道居住舱部分设备及月火转移推进级,用于支持月球空间站在 轨建造组装; S1-7、轨道居住舱部分设备进入月球空间站,利用月表资源,开始在轨3D打印,在 轨建造,完成轨道居住舱的建造; S1-9、月球轨道空间站对月火转移推进级进行在轨加注,物资补给; S1-10、地面发射地月载人飞船,进入环月轨道与月球空间站交会对接,乘员进入 轨道居住舱; S1-11、月火转移推进级携带载人飞船、轨道居住舱,进入奔火轨道; S1-12、在环火轨道上,载人飞船与月火转移推进级分离,月火转移推进级与轨道 居住舱留轨; S1-13、载人飞船携带乘员下降到火星表面; S1-14、乘员进入火星表面居住舱,在火星表面驻留,开展火星表面探索;同时, ISRU设备为载人飞船加注推进剂; S1-15、乘员进入载人飞船,载人飞船从火星表面发射,进入到环火轨道,与月火转 移推进级交会对接,并向月火转移推进级补加推进剂; S1-16、乘员进入居住舱,与载人飞船分离,月火转移推进级携带居住舱返回月球 L2点;载人飞船停留在环火轨道; S1-17、地面发射载人飞船,进入月球空间站; S1-18、地火转移推进级携带居住舱及乘员返回月球空间站; S1-19、在月球空间站轨道上,月火转移推进级与空间站对接,停留在月球空间站 轨道上;乘员进入地面刚发射的载人飞船; S1-20、载人飞船携带乘员返回地球; 所述步骤S2中,后续飞行过程重复所述步骤S1-12~S1-20。 本发明提供的基于可重复使用飞行器的全周期载人火星探测方法取得的有益效 果是: 首发任务中,通过多次发射的方式实现整个飞行器系统的发射。在后续任务中,根 据需要直接发射载人飞船以及推进剂。在该方案下,首发任务的发射规模较大,但后续的发 射规模较小,仅需要实现推进剂补加及人员发射即可。通过多次任务飞行,可降低全周期火 星探测任务成本。 附图说明 下面结合附图对发明作进一步说明: 图1为实施例1的火星探测飞行过程图; 图2为实施例2的火星探测飞行过程图。 7 CN 111572815 A 说 明 书 4/6 页
下载此资料需消耗2积分,
分享到:
收藏