logo好方法网

基于多次碰撞源-蒙特卡罗耦合获取反应堆外探测器响应的方法

技术摘要:
一种基于多次碰撞源‑蒙特卡罗耦合获取反应堆外探测器响应的方法,将反应堆区域分为堆内A区与堆外B区,根据多次碰撞源技术,碰撞源产生的中子通量密度为碰撞中子通量密度;将B区中堆外探测器处中子通量密度按中子来源分为两部分,第一部分为A区内第0→n次碰撞中子通量  全部
背景技术:
蒙特卡罗方法又称为概率论方法,该方法首先建立模型,使得问题的解是某个随 机变量的数学期望、或者与数学期望有关的量,然后通过试验的方法,统计估计该随机变量 的若干个具体观测值的算术平均值,即为该问题的解。用蒙特卡罗方法求解中子输运方程, 根据中子输运的物理过程建立模型,通过模拟大量中子的运动历史,并统计其对中子通量 密度或者其他响应量的贡献,以获得中子通量密度或者其他响应量的统计估计值。 在深穿透问题中,使用蒙特卡罗方法直接从反应堆堆芯中的外中子源出发进行模 拟,由于有屏蔽层的存在,到达位于屏蔽层外部的堆外探测位置的中子数较少,为了不发生 堆外中子通量密度的不规则波动,降低计算结果的方差,需要投入大量的中子进行模拟,造 成计算量大,堆外探测器处中子通量密度计算效率低的问题;使用源偏倚技巧对外中子源 产生的中子的飞行方向进行偏倚,舍弃与目标方向偏差较大的中子,提高剩余中子的权重, 在保证无偏性的同时提高了目标区域的模拟数目,以降低方差与总的模拟计算量。对于使 用源偏倚从单个外中子点源或者体源出发进行模拟,仅对源的方向进行了偏倚,对剩余中 子的模拟过程中,一部分中子碰撞、飞行会逐渐偏离目标探测器方位,这部分中子对目标位 置中子通量密度的统计贡献极小,蒙特卡罗方法追踪这部分中子会增加许多计算量;由品 质因子的定义可知,品质因子与计算时间和统计相对误差的平方的乘积成反比,当保证统 计相对误差一定时,计算时间越长,品质因子越低,则目标位置的统计效率不高。
技术实现要素:
为了克服上述现有技术存在的问题,本发明的目的在于提供一种基于多次碰撞 源-蒙特卡罗耦合获取反应堆外探测器响应的方法,本发明通过将确定论方法中的多次碰 撞源技术与蒙特卡罗方法相结合,实现确定论-蒙特卡罗方法耦合,充分利用确定论方法处 理深穿透问题中计算快速的优点与蒙特卡罗方法处理深穿透问题中堆外探测器部分复杂 几何问题的优点,并结合多次碰撞源技术产生多次碰撞源优化屏蔽计算中的蒙特卡罗计算 部分,提高到达堆外探测器处的中子数,使堆外探测器响应计算更加精确而快速。 为了实现上述目的,本发明采取了以下技术方案予以实施: 一种基于多次碰撞源-蒙特卡罗耦合获取反应堆外探测器响应的方法,该方法包 括以下步骤: 步骤1:根据中子从反应堆内中子源运动到堆外探测器途经区域的几何与材料特 征,将中子途经区域分为两个区:A区由堆芯、反射层和屏蔽体组成;B区由堆外探测室及内 置探测器组成;根据多次碰撞源技术,将中子与反应堆内材料原子核发生碰撞产生的散射 5 CN 111584104 A 说 明 书 2/7 页 源或裂变源命名为碰撞源,由碰撞源产生的中子通量密度命名为碰撞中子通量密度;将反 应堆外探测器处的中子通量密度按中子来源分为两部分,第一部分为A区内发生第0→n次 碰撞中子通量密度总和 第二部分为A区内发生大于n次碰撞中子通量密度总和与 B区内碰撞中子通量密度之和φM(r,E),计算公式为: 其中第二部分通量密度φM计算公式为: 其中 是A区内大于n次碰撞产生的分布于A区和B区的中子通量密度总和, φB(r,E)是B区内碰撞产生的分布于A区和B区的中子通量密度; 步骤2:将A区和B区,划分三维直角坐标系网格,将反应堆堆芯中的外中子体源转 换为位于多个网格内的外中子点源,转换方法为:体源源强密度乘以网格体积得到网格内 的点源源强,点源位于网格中心点处;用多次碰撞源技术中的确定论方法,从网格内的外中 子点源出发计算得到A区内发生第0→n次碰撞产生的分布于整个反应堆区域的中子通量密 度之和 与分布于整个反应堆区域的第n 1次碰撞源 对于A区域内一 个点源,利用半解析射线追踪方法计算从A区域内中子点源rp处产生的中子到达空间中指 定位置r处能量为E方向为Ω的未碰撞中子角通量密度 计算公式: 由未碰撞中子角通量密度进一步计算出未碰撞中子通量密度,计算公式为: 其中 是A区域内中子源产生的未碰撞中子角通量密度,Ω是中子运动方 向, 是A区域内中子源产生的空间位置r处能量为E的未碰撞中子通量密度, 是中子从rp处到达r处的运动方向, 是狄拉克函数,q是中子点源源强,τ(rp,r) 是中子从rp处穿行到达r处的光学距离,计算公式为: τ(rp,r)=∫sΣtds    (9) 其中Σt是总截面,s是中子从rp处穿行到达r处的路径长度;分布于A区内的首次碰 撞源 即A区内空间位置r处能量为E的首次碰撞源 由未碰撞中子角通量密度 计算出,计算公式为: 其中Σs(r,E′,Ω′→E,Ω)是空间位置r处中子从能量E′和方向Ω′散射至能量E 和方向Ω的散射截面,χ(E)是裂变谱,υ是每次裂变产生的平均中子数,Σf(r,E′)是中子在 6 CN 111584104 A 说 明 书 3/7 页 空间位置r处、能量E′的裂变截面,φ(r,Ω′,E′)是空间位置r处、能量为E′、方向为Ω′的中 子角通量密度;由于公式(10)中首次碰撞源仅分布于A区内,结合公式(4),公式(10)简写 为: 其中 是A区内空间位置r处能量为E的首次碰撞源,FA是A区内的F项算子, 形式与公式(4)中F项算子完全一致,但算子中的散射截面Σs(r,E′,Ω′→E,Ω)与裂变截 面Σf(r,E′)的空间位置r仅限A区域内;将A区内首次碰撞源 对所在的单个空间网 格体积积分后转换为网格中心ro处能量为E的首次碰撞点源 计算公式为: 其中Vcell为单个空间网格体积;将首次碰撞点源 代入公式(7)与公式(8) 中,替换点源源强q,ro替换rp,由公式(7)、公式(8)计算得到A区域内中子源产生的第1次中 子碰撞角通量密度 与A区域内中子源产生的第1次中子碰撞通量密度 将 φ1(r,Ω,E)代入公式(11)-公式(12)计算得到第2次碰撞点源 将第2次碰撞点源 代入公式(7)-公式(8)计算得到A区域内中子源产生的第2次中子碰撞角通量密度 和第2次中子碰撞通量密度 按照上述步骤多次迭代计算,计算得到分布 于整个反应堆区域的由A区域内中子源产生的空间位置r处能量为E的第0→n次碰撞中子通 量密度 与第0→n次碰撞中子角通量密度 将第0→n次碰撞中子通量密度相加, 得到第0→n次碰撞中子通量密度之和 计算公式为: 同理将第0→n次碰撞中子角通量密度相加,得到第0→n次碰撞中子角通量密度之 和 由公式(14)计算得到第n 1次碰撞源 计算公式为: 其中FB为反应堆外B区的F算子,形式与公式(4)中F项算子完全一致,但算子中的 散射截面Σs(r,E′,Ω′→E,Ω)与裂变截面Σf(r,E′)的空间位置r仅限B区域内; 步骤3:由蒙特卡罗方法从步骤2得到的第n 1次碰撞源 出发,对第n 1 次碰撞源 到B区域中堆外探测器区域进行源偏倚,并根据第n 1次碰撞源 与堆外探测器区域的距离,调整不同网格内的第n 1次碰撞源 的 权重后,对中子输运过程进行模拟,在堆外探测器区域网格内进行计数,得到堆外探测器位 置处的空间位置为r能量为E的第二部分中子通量密度φM(r,E); 7 CN 111584104 A 说 明 书 4/7 页 步骤4:将步骤2中得到的第0→n次碰撞中子角通量密度之和 与步骤3中 得到的堆外探测器位置处的空间位置为r能量为E的第二部分中子通量密度φM(r,E),在堆 外探测器区域网格内相加得到堆外探测器处的中子通量密度φ(r,E),将堆外探测器处的 中子通量密度φ(r,E)与探测器响应函数Σd相乘并对能量与空间积分获取反应堆外探测 器的响应RES。 与现有技术相比,本发明有如下优点: 本发明方法利用多次碰撞源技术,将反应堆内与堆外探测器所在区域划分空间直 角坐标系网格,并对堆内区与堆外区进行了分区,采用确定论方法,从反应堆内的外中子源 出发,得到分布于反应堆内区的前n次碰撞源,和分布于反应堆堆内区和堆外区的第n 1次 碰撞源,由于确定论计算的前n次碰撞源只分布于堆内区,相比不分区时计算分布于堆内与 堆外区的前n次碰撞源,分区能降低确定论计算的计算量;使用蒙特卡罗方法从第n 1次碰 撞源出发计算中子通量密度,多次碰撞源与外中子源相比,分布的范围更大,在投入相同数 目的中子时,使用蒙特卡罗方法计算多次碰撞源,到达堆外探测器处的中子数更多,使堆外 探测器处的中子通量密度计算更精确;同时,可以根据多次碰撞源的空间分布改变其权重, 降低距离堆外探测器较近的多次碰撞源的权重,从而增大粒子数增大模拟次数,提高距离 堆外探测器较远的多次碰撞源的权重,以减小粒子数,避免不必要的模拟,还可以对多次碰 撞源进行源方向偏倚,降低粒子从多次碰撞源飞向堆外探测器的方向的权重,进一步提高 到达堆外探测器处的中子数,能进一步降低统计学方差,使目标探测器处中子通量密度计 算更加精确。
分享到:
收藏